Spin Crossover Complex Film, $[Fe^{II}(H-trz)_3]$ -Nafion, with a Spin Transition around Room Temperature

Akio Nakamoto, Yuuki Ono, Norimichi Kojima,* Daiju Matsumura, \dagger and Toshihiko Yokoyama \dagger

Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 3-8-1, Meguro-ku, Tokyo 153-8902

 \hbar Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 ^{††}Institute for Molecular Science, Myodaiji, Okazaki 444-8585

(Received January 6, 2003; CL-030002)

We have synthesized $[Fe^{II}(H-trz)₃]$ _n complex film by using ion-exchange resin(Nafion) as counter anion, and have found the spin crossover phenomenon about at 260K. Moreover, we have proved the existence of straight one-dimensional Fe chain structure of $[Fe^{II}(H-trz)_3]_n$ on Nafion by means of EXAFS.

Recently, spin crossover phenomena converted between high spin (HS) state and low spin (LS) state have gained renewed importance since the discovery of the photo-induced spin transition called LIESST (Light Induced Excited Spin State Trapping) for $[Fe^{II}(ptz)_6](BF)_2$ (ptz = 1-propyltetrazole)¹ and the thermally induced spin transition with a large thermal hysteresis around room temperature for $1,2,4$ -triazole (= trz) bridged iron(II) complexes, $[Fe^{II}(H-trz)_{2.85}(NH_2-trz)_{0.15}]$ (ClO₄)₂·H₂O.² These properties have attracted much attention from the viewpoint of the photonic molecular device.

From the viewpoint of molecular devices, it is important to control the spin transition temperature T_c and the hysteresis width ΔT . In the case of triazole bridged polymeric Fe^{II} complex system, $[Fe^{II}(R-trz)_3]X_2$, the control of T_c and ΔT has extensively been carried out. In this system, T_c and ΔT remarkably depend on not only ligand molecule³ (R-trz) but also counter anion⁴ and crystal water.⁵ In order to realize photonic devices, the synthesis of single crystal or transparent film is indispensable. However, single crystals of $[Fe^{II}(R-trz)_3]X_2$ have not yet been obtained. So that, we have tried to synthesize the spin crossover complex film based on $[Fe^{II}(R-trz)_3]$. The challenge to synthesize the spincrossover complex film has been done for $[Fe(2-mephen)_3]^{2+}$ (2mephen = 2 -methyl-1,10-phenanthroline).⁶ However, our work is the first time to synthesize $[Fe^{II}(R-trz)_3]$ complex film with a spin transition around room temperature. Here, we report the synthesis and the spin crossover phenomenon for $[Fe^{II}(R-trz)_3]$ -Nafion $(R = H, NH₂)$.

In the triazole-bridged iron(II) chain system, various kinds of molecules having $R-SO_3^-$ ($R = C_nH_{2n+1}$, C_6H_5 , etc.) are acceptable as counter anion, from which the idea to synthesize the spin crossover complex film by using Nafion film (DuPont Co.) has been raised. Nafion is composed of a polytetrafluoroethylene backbone with perfluorinated ether side chains terminated by sulfonic acid group as shown in Figure 1. In the case of Nafion 117, the pendant Y-SO₃H (Y = perfluorinated ether side

$$
\begin{array}{l} -[CF_2\text{-}CF_2]_{x} \text{[CF-}CF_2]_{y} \\ \text{O-}\begin{bmatrix} CF_2\text{-}CF_2\text{-}OF_2\text{-}CF_2\text{-}CF_2\text{-}SG_3H \\ \text{C}F_3 \end{bmatrix} \end{array}
$$

Figure 1. Molecular formula of Nafion 117: $x = 6$, $y = 1$, $z = 1$.

chain) groups in the perfluorinated ionomer are known to form clusters of 40\AA diameter separated by a distance of 50\AA and interconnected through channels of 10 Å when they are swollen in water.⁷

The spin crossover complex film, $[Fe^{II}(R-trz)_3]$ -Nafion (R = H , NH₂), was prepared in the following way. The acid form of Nafion was immersed in an aqueous solution of $FeSO₄$. The mobile anions (SO_4^2) are more or less completely excluded from the polymer matrix. Only Fe^{2+} ions are absorbed into Nafion membrane. After being immersed in the solution for 2 h, the membrane was rinsed in methanol, and then it was immersed in methanol solution of R-trz at 330K for 1 h. All operations were carried out under nitrogen gas. The preparation process of $[Fe^{II}(R-trz)_3]$ -Nafion is schematically shown in Figure 2.

Figure 2. Schematic preparation process of $[Fe^{II}(R-trz)₃]$ Nafion. N-N represents 4-R-trz.

The colors of Nafion films after being immersed in methanol solution of NH2-trz and H-trz are colorless and pale pink, respectively, at 290K. However, their color became to be purple at liquid N_2 temperature, which implies the spin crossover phenomenon (Inset in Figure 3). Note that the colors of the HS state $(t_{2g}^4 e_g^2, S = 2)$ and the LS state $(t_{2g}^6, S = 0)$ of [Fe^{II}(Rtrz)₃] X_2 ^{nH}₂O (R = H, NH₂; X = ClO₄, etc.) are colorless and purple, respectively. In fact, the absorption spectrum of $[Fe^{II}(H$ trz)₃]-Nafion shows two broad bands at 18500 cm^{-1} and 24500 cm⁻¹ corresponding to the ¹ $A_{1g} \rightarrow {}^{1}T_{1g}$ and ¹ $A_{1g} \rightarrow {}^{1}T_{2g}$ transitions, respectively, in the LS state $(S = 0)$, while it shows a broad band at 12500 cm⁻¹ corresponding to the ${}^5T_{2g} \rightarrow {}^5E_g$ transition in the HS state $(S = 2)$.

In order to prove that the one-dimensional Fe chain structure of $[Fe^{II}(H-trz)_3]_n$ is formed on Nafion film, we measured the Fe Kedge EXAFS spectra for $[Fe^{II}(R-trz)_3]$ -Nafion ($R = H$, NH₂). The Fe K-edge EXAFS spectra were taken in the conventional transmission mode at Beam Line-10B in the Photon Factory in the Institute of Materials Structure Science, Tsukuba. The Fourier transforms of each spectrum at 65 K are shown in Figure 4. The main peak at about 1.7 Å of the Fourier transform corresponds to the Fe-N scattering. A noticeable feature is the existence of peak around 7 Å. In the normal EXAFS spectroscopy, any distinct peak does not appear in this range. However, in the case that the Fe atoms are arranged in a straight chain, the multiple scattering is

Copyright © 2003 The Chemical Society of Japan

Figure 3. χT as a function of temperature for $[Fe^{II}(H-trz)_3]$ -Nafion, $[Fe^{II}(NH_2-trz)_3]$ -Nafion in cooling mode (∇ , ∇) and heating mode (Δ , Δ), respectively. The susceptibility of the vertical axis is the value per unit mass which includes the membrane mass. Inset shows the color (purple) in the low-spin state $(T = 77 \text{ K})$ and that (colorless) in the high-spin state $(T = 300 \text{ K}).$

Figure 4. Fourier transforms of Fe K-edge EXAFS oscillation function $k^3 \chi(k)$ for (a) $[Fe^{II}(H-trz)$ ₃]-Nafion and (b) $[Fe^{II}(NH_2$ trz ₃]-Nafion at 65 K. Inset shows the multiple scattering from the next nearest neighbor Fe-Fe-Fe shell which is responsible for the EXAFS spectrum at about 7 Å.

generally enhanced, so that the significant peak appears at long radius region.⁸ The peak at about 7 Å corresponds to the Fe-Fe-Fe multiple scattering, which proves the existence of straight onedimensional Fe chain structure.

In order to investigate the detailed spin crossover phenomenon, we measured the temperature dependence of magnetic susceptibility(χ) for [Fe^{II}(H-trz)₃]-Nafion film and [Fe^{II}(NH₂- trz ₃]-Nafion film. The static magnetic susceptibility was measured by using a Quantum Design MPMSXL SQUID susceptometer. The sample was sealed in an aluminum capsule to avoid a loss of crystal water in heating process. The applied magnetic field was 1 kG. The temperature was swept in quite slow rate of 0.1 K/min for heating and cooling process in order to investigate the thermal hysteresis at the spin transition. The χT as a function of temperature for $[Fe^{II}(H-trz)_3]$ -Nafion film and $[Fe^{II}(NH_2 \text{trz}$ ₃]-Nafion are shown in Figure 3. The spin transition for [Fe^{II}(H-trz)₃]-Nafion takes place at about $T_{1/2}=260$ K ($T_{1/2}$ is defined as the temperature at which the fraction of HS induced by the spin transition is a half.). The thermal hysteresis width is confirmed to be 3 K. The spin transition for $[Fe^{II}(NH_2-trz)_3]$ -Nafion takes place at about $T_{1/2} = 198$ K. In this case, the thermal hysteresis vanishes.

The magnetic susceptibility as a function of temperature shows residual paramagnetic fraction below 200 K, which is attributed to the HS state of Fe^{II} . The line profile of ESR below $10K$ is typical one of the HS state of Fe II . The residual HS fraction would be attributed to the terminal Fe^{II} site in the oligomer of $[Fe(H-trz)₃]$ _n on Nafion film. In connection with this, the following should be mentioned. In the case of the Fe^{II} trimer complex, $[Fe^{II}{}_{3}(Et-trz)_{6}(H_{2}O)_{6}](CF_{3}SO_{3})_{6}$ (Et-trz = 4-ethyl-1,2,4-triazole), the central Fe^{II} site undergoes the LS-HS transition at about 200 K, while the spin state of the terminal Fe^{II} sites is the HS state between $2 K$ and $300 K$.⁹

In conclusion, we have succeeded in synthesizing transparent $[Fe^{II}(R-trz)_3]$ complex film by using ion-exchange film (Nafion) as counter anion, which shows the spin crossover phenomenon at about 260K. In our preparation process, it is possible to prepare the homogeneous $[Fe^{II}(R-trz)_3]$ complex film of 300 mm \times 300 mm. The development of transparent [Fe^{II}(Rtrz)3]-Nafion film will open a large field of photonic molecular devices based on spin-crossover phenomenon.

This work was supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology Japan.

References

- 1 S. Decurtins, P. Gütlich, C. P. Köhler, H. Spiering, and A. Hauser, Chem. Phys. Lett., 105, 1 (1984).
- 2 J. Kröber, E. Codjovi, O. Kahn, F. Grolière, and C. Jay, J. Am. Chem. Soc., 115, 9810 (1993).
- 3 O. Kahn and C. J. Martinez, Science, 279, 44 (1998).
- 4 J. J. A. Kolnaar, Doctoral Thesis, Leiden University (1998).
- 5 S. Toyazaki, Y. Murakami, T. Komatsu, and N. Kojima, Mol. Cryst. Liq. Cryst., 343, 175 (2000).
- 6 A. Hauser, J. Adler, and P. Gütlich, Chem. Phys. Lett., 152, 468 (1988).
- 7 T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci., 19, 1687 (1981).
- 8 A. Stern, in ''X-ray Absorption,'' ed. by D. C. Koning Sberger and R. Prins, John Wiley & Sons, New York (1988), Chap. 1.
- 9 G. Vos, R. A. G. De Graaff, J. G. Haasnoot, A. M. Van der Kraan, P. De Vaal, and J. Reedijk, Inorg. Chem., 23, 2905 (1984).